
Tersus Visual Programming Platform

Ofer Brandes Youval Bronicki

Tersus Software Ltd. Tersus Inc.

Herzliya, Israel Santa Clara, California, USA

ofer.brandes@tersus.com youval.bronicki@tersus.com

Abstract—A visual programming language that has emerged

from real life needs to become a general purpose software

development platform. Providing a unified language for modeling

user interface, client-side behavior and server-side processing, it

is mainly used by individuals and enterprises to develop web

applications as well as cross-device mobile applications.

I. EXECUTABLE GRAPHICS

The Tersus visual programming platform is a development
environment, a collection of model libraries and an execution
engine – all based on the Tersus modeling language – used to
develop various types of software applications [[1], 4]. The
Tersus platform allows a developer to “draw” the software
rather than program it by code. Creating an application is done
by defining a hierarchy of visual models, in which each model
may be composed of lower level components. The developer
starts at a top-level diagram representing the whole system, and
then continues with an iterative top-down refinement process,
drilling down from each model to specify its components.
Employing an “infinite drawing board” that displays
graphically the whole model hierarchy, the developer can fully
and precisely specify the required business logic in a visual and
intuitive manner. The ability to zoom from one level of the
model to lower levels and back practically overcomes the
Deutsch Limit regarding the ability of visual programming to
represent highly complex systems [3].

To borrow Fred Lakin's term [2], the Tersus platform
provides "Executable Graphics". The models are saved as
XML files, are read by the execution engine, which executes
the functionality defined by the models.

II. A PRODUCT EMERGING FROM REAL LIFE PROBLEMS

The Tersus Visual Programming Platform has emerged
from over a decade of development. Our initial goal, back in
1998, was to develop a data transformation engine to convert
financial messages from one format standard to another
without writing code (i.e. by business experts rather than
programmers). The solution was to define message structures
as hierarchies of data elements and to define a transformation
between such structures as a set of field-to-field (or multiple-
fields to field) atomic calculations. At runtime we performed
parsing of each input message and applied the relevant
transformation rules to create the appropriate output message.

Very quickly it became apparent that in real life systems,
message transformation is just part of a larger business process,
and we enhanced our platform to a full scale dataflow system
that also enabled the definition of processes, conditional flows
and iterations.

The last stage in this evolution was to add the ability to
model the GUI of applications, thus making the platform a
general purpose software development platform.

III. THE TERUS MODELING LANGUAGE

The model of a typical application consists of Systems
(high level modules), Displays (GUI components), Processes
(activity units), and Data Structures and Data Items
(information used by the application). Processes (and in certain
cases also systems and displays) are able to receive and send
out data through Slots. The flow of data between processes, as
well as the sequencing of processes, is governed by flows (a
flow appears in the model diagram as an arrow between two
model elements, each of which is a slot or a data element).

IV. UNIFIED MODELOING LANGUAGE

AJAX is a rather complex technique that involves client
side programming in one language (usually Javascript) and a
different language (like Java or PHP) on the server side. Tersus
uses AJAX techniques "under the hood", and hides this
complexity from the developers, who can use the same
modeling language to define user interface, client-side behavior
and server-side processing.

V. MORE THAN YET ANOTHER DATAFLOW LANGUAGE

The Tersus Modeling Language is a dataflow language,
using data flow diagrams and defining applications in terms of
the data flowing between operation components.

But the Tersus language has a significant additional
expressive power over other dataflow languages, equivalent to
the expressive power of the leading procedural and object
oriented language. This extra expressive power stems mainly
from 3 sources: (1) In traditional dataflow languages, an
operations component is a "black box" with inputs and outputs,
all of which are always explicitly defined, and it is run as soon
as all its inputs become available. In Tersus, optional input
slots can be specified. (2) Tersus allows the modeling of
arbitrarily complex data structures, and flows can be defined
from/to any element or sub-element of a data structure. (3)
Tersus supports type inference.

VI. REUSE, TEMPLATES AND PROTOTYPES

Any model defined in Tersus can be reused in multiple
contexts. This is equivalent to a method that is called from
various places in the code of a computer program.

A Template is a generic/typical model that is cloned rather
than reused. This allows the developer to benefit from best
practices and domain knowledge of other developers. The
Tersus libraries of models contain many templates of useful
models, including atomic models provided as part of the
platform (mathematical and textual operations, GUI
components, database access components, etc.).

A Prototype is a special kind of a template, which has
multiplicity properties for each of its elements (e.g., exactly 1,
or 2-4). When a prototype is cloned to create a specific model,
each of its elements is duplicated according to its default
multiplicity. A model created from a prototype maintains a
reference to its prototype, which enables easy maintenance of
the constraints implied by the prototype and increases
productivity.

VII. INTEGRATIONS

A Tersus-based application can be a standalone application,
but may also integrate with other applications. The platform
supports various methods of integration, including interaction
with multiple databases (any database supporting JDBC),
HTTP requests, and SOAP web services (a WSDL file defining
SOAP web services can be imported to create Tersus models,
which are then used like any other model).

VIII. DEVELOPING CROSS-DEVICE MOBILE APPLICATIONS

While Tersus is a general purpose language, it has been
mostly used in the last years by individuals and enterprises to
develop rich web applications, ranging from small ad-hoc
applications to complex multi-user ERP systems.

In the last couple of years, with the rise of iPhone and
Android devices, smartphones became capable of running
Tersus applications as well, and Tersus is also used to develop
cross-device mobile applications (i.e. the developer develops
the application once, and then deploys it on either an iPhone
device or an Android device).

IX. WHO CAN USE TERSUS?

Programmers skilled in mainstream programming
languages are, of course, the natural candidates to use visual
programming, although some of them resent the notion. Yet, as
Tersus uses flow diagrams, which can be understood by non-
programmers, Tersus is also used by "soft developers" (like
application designers and web site builders).

REFERENCES

[1] Bronicki, Y., Brandes, O., Raskin, Y., Shaked, Y., Szekely, S. “Method,
a language and a system for the definition and implementation of
software solutions by using a visualizable computer executable
modeling language”, United States Patent 7,694,272, 2010.

[2] R. Baeza-Yates, Comments on Visual Programming,
http://www.dcc.uchile.cl/~rbaeza/cursos/vp/todo.html.

[3] D. McIntyre, Visual Languages,
http://www.hypernews.org/~liberte/computing/visual.html, 1994.

[4] Tersus web site, http://www.tersus.com, 2006-2011.

http://www.dcc.uchile.cl/~rbaeza/cursos/vp/todo.html
http://www.hypernews.org/~liberte/computing/visual.html
http://www.tersus.com/

